

DPP - 1 (Sound Waves)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/95

https://youtu.be/YFXRQTdQKPI

Q 1. The speed of sound will be maximum in
(a) Humid air at $25^{\circ} \mathrm{C}$
(b) Dry air at $25^{\circ} \mathrm{C}$
(c) Humid air at $5^{\circ} \mathrm{C}$
(d) Dry air at $5^{\circ} \mathrm{C}$

Q 2. Under the same conditions of pressure and temperature, the velocity of sound in oxygen and hydrogen gases are V_{O} and V_{H} then
(a) $V_{H}=V_{O}$
(b) $V_{H}=4 V_{O}$
(c) $V_{H}=\frac{V_{O}}{4}$
(d) $V_{H}=16 V_{O}$

Q 3. The speed of sound in gas at NTP is $300 \mathrm{~m} / \mathrm{s}$. If the pressure is increased four times without a change in temperature the velocity of sound will be?
(a) $150 \mathrm{~m} / \mathrm{s}$
(b) $300 \mathrm{~m} / \mathrm{s}$
(c) $600 \mathrm{~m} / \mathrm{s}$
(d) $1200 \mathrm{~m} / \mathrm{s}$

Q 4. The frequency of a rod is 200 Hz . If the velocity of sound in air is $340 \mathrm{~m} / \mathrm{s}$, the wavelength of the sound produced is
(a) 1.7 cm
(b) 6.8 cm
(c) 1.7 m
(d) 6.8 m

Q 5. Calculate the speed of longitudinal wave in steel. Young's modulus for steel is $3 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ and its density $1.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
(a) $5000 \mathrm{~m} / \mathrm{s}$
(b) $300 \mathrm{~m} / \mathrm{s}$
(c) $3300 \mathrm{~m} / \mathrm{s}$
(d) $1500 \mathrm{~m} / \mathrm{s}$

Q 6. Calculate the speed of longitudinal sound wave in a liquid. The bulk modulus for the liquid is $20 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$ and its density is $9.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
(a) $440 \mathrm{~m} / \mathrm{s}$
(b) $170 \mathrm{~m} / \mathrm{s}$
(c) $1450 \mathrm{~m} / \mathrm{s}$
(d) $775 \mathrm{~m} / \mathrm{s}$

Q 7. For aluminium, the bulk modulus and modulus of rigidity are $7.5 \times 10^{10} \mathrm{~N} / m^{2}$ and $2.01 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ respectively. Find the velcoity of longitudinal and transverse wave in the medium. Given desity of aluminium is $2.7 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$.
(a) $6.18 \times 10^{3} \mathrm{~m} / \mathrm{s}, 2.7 \times 10^{3} \mathrm{~m} / \mathrm{s}$
(b) $3.2 \times 10^{4} \mathrm{~m} / \mathrm{s}, 2.7 \times 10^{3} \mathrm{~m} /$
(c) $6.18 \times 10^{3} \mathrm{~m} / \mathrm{s}, 5.1 \times 10^{3} \mathrm{~m} / \mathrm{s}$
(d) $1.2 \times 10^{4} \mathrm{~m} / \mathrm{s}, 3.2 \times 10^{4} \mathrm{~m} / \mathrm{s}$

hysicsaholics

Q 8. Laplace's correction in the formula for the speed of sound given by Newton was needed because sound waves
(a) are longitudinal
(b) propagate isothermally
(c) propagate adiabatically
(d) have long wavelengths

Q 9. The speed of sound in a gas is v and the root mean square speed of gas molecules is $v_{r m s}$. If the ratio of the specific heats of the gas is 1.5 then the ratio $\frac{v}{v_{r m s}}$ is
(a) $1: 2$
(b) $1: \sqrt{3}$
(c) $1: \sqrt{2}$
(d) $1: 3$

Q 10. The temperature at which speed of sound in air becomes double its value at $0^{\circ} \mathrm{C}$ is
(a) $546{ }^{\circ} \mathrm{C}$
(b) $819^{\circ} \mathrm{C}$
(c) $273^{\circ} \mathrm{C}$
(d) $1092{ }^{\circ} \mathrm{C}$

Q 11. The specific gravity of oxygen and nitrogen are in the ration of $16: 14$. The temperature at which the velocity of sound will be the same as that of nitrogen at 15 ${ }^{\circ} \mathrm{C}$ will be:
(a) $112{ }^{\circ} \mathrm{C}$
(b) $72{ }^{\circ} \mathrm{C}$
(c) $48{ }^{\circ} \mathrm{C}$
(d) $55^{\circ} \mathrm{C}$

Q 12. If the air pressure is doubled at constant temperature, then the speed of sound will be become-
(a) Double
(b) Three time
(c) Four time
(d) Remain constant

Q 13. Find the speed of sound in a mixture of 1 mole of helium and 2 moles of oxygen at 27 ${ }^{\circ} \mathrm{C}$.
If the temperature is raised by 1 K from 300 K , find the percentage change in the speed of sound in the gaseous mixture. [Take $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$]
(a) $340 \mathrm{~m} / \mathrm{s}, 1.67 \%$
(b) $349.2 \mathrm{~m} / \mathrm{s}, 1.33 \%$
(c) $200 \mathrm{~m} / \mathrm{s}, 0.67$ \%
(d) $400.9 \mathrm{~m} / \mathrm{s}, 0.167 \%$

Q 14. The speed of sound in a mixture of $n_{1}=2$ moles of $\mathrm{He}, n_{2}=2$ moles of H_{2} at temperature $\mathrm{T}=\frac{972}{5} \mathrm{~K}$ is $n \times 10 \mathrm{~m} / \mathrm{s}$. Find n
[Take $\mathrm{R}=\frac{25}{3} \mathrm{~J} / \mathrm{mol}-\mathrm{K}$]
(a) 9
(b) 90
(c) 15
(d) 35

Answer Key

Q. 1	a	Q. 2	b	Q. 3	b	Q. 4	c	Q. 5	a
Q. 6	c	Q. 7	a	Q. 8	c	Q.9	c	Q.10	b
Q.11	d	Q.12	d	Q.13	d	Q.14	b		

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
x Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

6 months
No cost EMI

Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.
₹4,200/mo

$$
+10 \% \text { OFF ₹ } 25,200
$$

Written Solution

DPP-1 Sound Waves: Speed of Sound in Fluid, Solid \& Gas
By Physicsaholics Team

Solution: 1
$V=$ speed of sound
$T=$ Temperature
$d=$ density of medium
\& $V \alpha T$ \& $V \alpha \frac{1}{\sqrt{d}}$

$$
T=5^{\circ} \mathrm{C} \text { and } 25^{\circ} \mathrm{C}
$$

so

$$
(V)_{T=25^{\circ} \mathrm{C}}>\left(V / T=5^{\circ} \mathrm{C}\right.
$$

$4 \quad v \propto \frac{1}{\sqrt{d}}$
So;

so; $\frac{\text { Combining results from }}{}$ equation $1 \& 2$
velocity of Humid air at $25^{\circ} \mathrm{C}$ l's maximum.

And; as we know d that dry airy is more dowse than Humid air.

$$
\Rightarrow \rho_{d a y}>\rho_{\text {cumin }}
$$

Solution: 2
speed of Sound in ain $V=\sqrt{\frac{Y p}{\rho}}$

$$
V=\sqrt{\frac{Y R T}{M}}
$$

When; P \& $T=$ constant

Ans. b

Solution: 3

$$
\begin{aligned}
& V=\sqrt{\frac{Y P}{S}}=\sqrt{\frac{Y R T}{M}} \\
& V \propto \sqrt{T}
\end{aligned}
$$

Solution: 4

$$
\begin{aligned}
& f=200 \mathrm{~Hz} \\
& V=340 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\because \quad & =f \lambda \\
\Rightarrow \quad \lambda & =\frac{v}{f} \\
\lambda & =\frac{340}{200}
\end{aligned}
$$

Solution: 5

Ans. a

Solution: 6

$$
\begin{aligned}
V & =\sqrt{\frac{R}{S}} \\
V & =\sqrt{\frac{20 \times 10^{9}}{9.5 \times 10^{3}}} \\
V & =\sqrt{\frac{20}{9.5} \times 10^{6}} \\
& =\sqrt{2.105 \times 106} \\
V & =1.45 \times 10^{-5} \mathrm{~m} / \mathrm{s} \\
V & =1450 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Ans. c

Solution: 7

$$
\begin{aligned}
& B=7.5 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} \\
& n=2.01 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2} \\
& \rho=2.7 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

$$
V_{\mathrm{k}}=6-12 \times i 0^{3} \mathrm{~m} / \mathrm{s} \text { sus }
$$

velocity of lomgitudinal wave in solids:

$$
\begin{aligned}
& v_{l}=\sqrt{\frac{B+\frac{4}{3} n}{\rho}} \\
& v_{l}=\sqrt{\frac{(2.520109)+\frac{4}{3}\left(2.1 \times 100^{10}\right.}{2.7 \times 10^{3}}} \\
& v_{1}=\sqrt{\frac{10.3 \times 10^{10}}{30.7 \times 10^{3}}} \\
& V_{l}=\sqrt{3.81 \times 10^{7}}=\sqrt{37.7 \times 10^{6}}
\end{aligned}
$$

Melocity of Tranguerse wave Jin solide? in solids

Solution: 8
Laplace corrected Newton's formula by assuming that, there is no heat exchange takes place as the compression and rafefaction takes place very fast. Thus, the temperature does not remain constant and the propagation of the sound wave in air is an adiabatic process.

Ans. C

Solution: 9

$$
\because v_{\text {rms }}=\sqrt{\frac{3 R T}{M}}
$$

and; speed of sound wave $=v=$ so; $\frac{V}{V_{\text {rus }}}=\frac{\sqrt{\frac{V R T}{M}}}{\sqrt{\frac{3 R T}{M}}} \sqrt{2}$

Ans. c

Solution: 10

$$
\because v \propto \sqrt{T}
$$

at Temp $=T_{1}=0^{\circ} \mathrm{C}=213 \mathrm{~K}, V_{1}=V$
$\operatorname{sen} \operatorname{Tan} p=T_{2} ; V_{2}=2 V$
so;

$$
\begin{aligned}
& \frac{v_{1}}{v_{2}}=\sqrt{\frac{T_{1}}{T_{2}}} \\
& \frac{v_{1}}{2 v}=\sqrt{\frac{273}{T_{2}}} \\
& \left.\left(\frac{1}{2}\right)^{2}=\sqrt{\frac{213}{T_{2}}}\right)^{2} \\
& \frac{1}{4}=\frac{273}{1 / 2}
\end{aligned}
$$

Solution: 11

$$
\begin{aligned}
& V_{0}=V_{N} \\
& \frac{\partial R T_{0}}{M_{0}}=\sqrt{\frac{\partial R T_{N}}{M_{N}}} \\
& \Rightarrow \frac{T_{0}}{M_{0}}=\frac{T_{N}}{M_{N}} \\
& \Rightarrow \frac{T_{0}^{\prime}}{32}=\frac{(14+2732}{28} \\
& T_{0}=32882 \\
& T_{0}=55{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Ans. d

Solution: 12

$$
\begin{aligned}
& V=\sqrt{\frac{3 P}{S}} \\
& V=\sqrt{\frac{3 R T}{M}} \\
& \Rightarrow V \alpha \sqrt{T}
\end{aligned}
$$

$$
\text { when; } T=\text { cost }
$$

Solution: 13
(a)

$$
\begin{aligned}
& n_{1}=1 \text { mole; } r_{1}=\frac{5}{3} \quad\left[\begin{array}{c}
\text { me- monoatomic } \\
\text { gas }
\end{array}\right] \\
& n_{2}=2 \text { mole; } r_{2}=\frac{1}{5}\left[\begin{array}{c}
0_{2} \text { diatomic } \\
\text { gas }
\end{array}\right] \\
& \frac{n}{r_{\text {mix }}-1}=\frac{n_{1}}{n_{1}-1}+n_{2}=3 \text { mole } \\
& \frac{3}{r_{\text {mix }}-1}=\frac{1}{r_{\text {mix }}-1}=\frac{n_{2}}{2}=\frac{5}{2}=1
\end{aligned}
$$

molecular mass of mixture gas

$$
M=\frac{n_{1} m_{1}+n_{2} m_{2}}{n_{1}+n_{2}}=\frac{(1 \times 4)+2(32)}{1+2}
$$

$$
\text { (A) } \frac{68}{3} \text { gungmole. }
$$

$$
v=\sqrt{\frac{\pi}{m}} \frac{\frac{19}{13} \times 8.31 \times 300}{(68 / 3) \times 10^{-3} \mathrm{~kg}}
$$

$v=400.9$ mas Ans
(b)

$$
\begin{aligned}
& \because V \alpha \sqrt{T} \Rightarrow \frac{\Delta V}{V} \%=\frac{1}{2} \frac{\Delta T}{T} \% \\
& \frac{\Delta V}{V} \%=\frac{1}{2}\left(\frac{1}{3 \omega} \times 100\right)=\frac{1}{6} \\
& \frac{\Delta V}{V} \%=0.167 \% \text { Ar s }
\end{aligned}
$$

Ans. d

Solution: 14

$$
\begin{aligned}
M & =\frac{n_{1} M_{1}+n_{2} M_{2}}{n_{2}+n_{2}} \\
& =\frac{(2 \times 4)+(2 \times 2)}{2+2} \\
M & =\frac{12}{4} \\
M & =3 \text { gm/mole }
\end{aligned}
$$

$$
\frac{4}{r_{\min }-1}=2\left(\frac{3}{2}+\frac{5}{2}\right)=x\left(\frac{8}{2}\right)
$$

$r_{\text {main }}=\frac{3}{2}$

$$
V=\sqrt{\frac{r_{\text {mir } R T}}{(M)}}=\sqrt{\frac{\frac{3}{2} \times \frac{5}{2} \frac{3}{2}}{3 \times 10^{-3}} \times \frac{972}{7}}
$$

for He; $r_{1}=\frac{5}{3} \quad P n_{1}=2$ mole
$\operatorname{son} \mathrm{H}_{2} ; n_{2}=\frac{7}{5} \quad n_{1}=2 \mathrm{moleg}$

$$
\frac{n}{r_{m_{n^{\prime} x}}-1}=\frac{n_{1}}{r_{1}-1}+\frac{n_{2}}{n_{2}-1}
$$

$$
\frac{4}{r_{\text {mix }}-1}=\frac{2}{\frac{5}{3}-1}+\frac{2}{\frac{7}{5}-1}
$$

$$
\begin{aligned}
& V=\sqrt{810 \times 10^{3}}=\sqrt{81 \times 10^{4}} \\
& V=9 \times 10^{2} \\
& V=900 \mathrm{~m} / \mathrm{s} \text { Ans }
\end{aligned}
$$

Ans. b

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/95

Video Solution on YouTube:-
https://youtu.be/YFXRQTdQKPI

Written Solution on Website:-

Chalo Nikis

